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Mathematics 

 
1. Present Taylor's formula for functions of one variable and how can be  

used in approximating functions by polynomials. 
 

Answer: 

 Let RR If : , and Ix 0 , where )(1 ICf n . Then                                      )()()( xRxTxf nn   
(Taylor's formula), 

where nT is the Taylor’s polynomial of  nth order, and nR  is the reminder: 
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It follows the approximation formula for )(xf  in a neighborhood V  of  0x : 

       )()( xTxf n , 

with the error )(sup xRn
Vx

n


 . 

 

2. Define the notions of eigenvalue (or proper value) and eigenvector (or proper vector) on a 
linear operator. 

  

Answer: 

 We consider the vector space V defined over the field  K  and the linear operator         f : V  
V. A vector v  V (different from the null vector of V) is called an eigenvector (or proper vector) of the 
operator f  if there exists a scalar  from K such that f(v) = v. The scalar  is called an eigenvalue (or 
proper value) of f.  
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3. Specify how the extremes of a function of class 2C  of two variables can be  

found. 

 

Answer: 

The extremes of the function ),( yxuu   are among the stationary points, namely the solutions of  the 

system 
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4. Define the following notions: arithmetical mean, weighted arithmetical mean and geometrical 
mean. 

 

Answer: 

Let {x1, x2, …, xn} be a non-empty set of records (real numbers) with non-negative wedges {p1, p2, …, 
pn}. 

Weighted mean:  
n
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2211  (the elements with a greater weight have more 
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Arithmetical mean :  Ma  it is a particular case of the weight mean Mp when all weights are equals 

n
pn

1
 . 

We have 
n

xxxx
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21

1

1  (Ma indicates the central trend of a set numbers). 

Geometrical mean :  n
ng xxxM ,, 21  if xi  0, i = n,1 . The geometrical mean has the following 

geometric explanation: the geometrical mean baM g   of two numbers a, b Є R+ represents the 
length of a square with the same area as a rectangle with lengths a and b. 

 

     5.  Define the notion of the conditional probability, write and explain the Bayes’s formula.  

 

Answer: 

Let  PKE ,, a probability space and KBA , two events with 0)( AP . We call the probability of the 
event B conditioned by the event A, the expression: 

)(
)()/()(

AP
BAPABPBPA


  

Let  nBBBS 21 ,  an events complete system. Therefore, jiBBKBBE
n

i
jiii 


,,,

1
  . We 

say that the system S   is a partition of the sure event E, and the events Bi are called outcomes.  

Bayes’s formula:  
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 This formula returns the probability of an outcome in the hypothesis that the event A has 
occured, or, more precisely, the probability that to occur the event A to be conditioned by the outcome 
Bi . 
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6. Define for a discrete (and finite) random variable the following numerical characteristics: mean 
value, variance and standard deviation. 

Answer: 

 Let  be a discrete (and finite) random variable with its probability distribution  
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Mean value:   



n

i
ii pxM

1

 . The mean value represents a numerical value around which it’s find a 

group of the values for this random variable. 

Variance:      222  MMD  . 

Standard deviation:   )(2  DD  . 

 The variance and the standard deviation are indicators which explain the “scattering” of the 
values for a random variable, giving information on the concentration degree of the values around to its 
mean value.  

 

7. Define the Laplace transform and write the formula for the derivative.  

 

Answer:  

 If f is an original function, then its Laplace transform is  





0

)()()( dtetfsLf ts  

Image of the derivative:      )0()()()()( '
 fsLfssLf . 

 

8.  Define the Z transform (the discrete Laplace transform) and calculate its image for the unit-step 
signal. 

Answer:  

 If {fn} is an original sequence, then its Z transform is:  
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9. Polar, cylindrical and spherical coordinate systems. 

 

Answer: 

The conversion between the Cartesian coordinates (x, y) of a point in the plane and the polar 
coordinates ),(   of the same point is given by the relations : 











sin
cos

y
x

, 

where      [0, ∞),       [0, 2π). 

 

The conversion between the Cartesian coordinates (x, y, z) of a point in three-dimensional space 
and the cylindrical coordinates ),,( z  of the same point is given by the relations : 
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zz
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sin
cos

, 

where      [0, ∞),       [0, 2π),  z  R. 
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The conversion between the Cartesian coordinates (x, y, z) of a point in three-dimensional space 
and the spherical coordinates ),,(   of the same point is given by the relations : 




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


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





cos
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z
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x

, 

where     [0, ∞),      [0, 2π),    [0, π]. 

 

       10. Physical and geometrical magnitudes calculated by integrals. Formula for the flux of a 
vector field.  

 

Answer: 

    Area of a plane domain, volume of a body, mass, centre of gravity, moments of inertia, the work of a 
field of force. 

Let S  be a smooth surface and let kRjQiPv


  be a continuous vector field on S . The flux of the 

vector field v  across the surface S  oriented by the normal vector kjin
 )(cos)(cos)(cos    

is: 

 
SS

dSRQPdSnv )coscoscos()( 
 . 

 

     11. Derivative with respect to a versor of a real function. Gradient, divergence and curl. 

 

Answer: 

    Let RR Df :  be a scalar field, let 3Rs , ||s||=1, be a versor and Da . The derivative of f in 
the direction of s  at the point a  is the limit (provided that it exists) 
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The derivative  a
s
f 


  characterizes the velocity variation of f with respect to s  at the point a . The 

gradient of f  at a  is defined by 
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   where Nabla is the operator of Hamilton: k
z

j
y

i
x














 . 

It can be proved that    afsa
s
f 
 

 , that is the directional derivative of f at a  in the direction s is 

equal to the dot product between the gradient of f  and s . 

  From here it follows that the gradient direction of a scalar field is the direction of maximum value of 
that field, that is the field has the fastest variation. 

    Let RUv :  be a vector field defined on an open set 3RU  ,  RQPv ,,
 . The divergence of 

the field v  at a current point is the scalar (number) 
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The curl of the field v  at a current point is the vector 
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     12. Write the Fourier series and the  Fourier coefficients for a continuous periodic signal. 

 

Answer:  Let  RR :f be an integrable and periodic function having the period T and 
T
 2

 . The 

Fourier coefficients are: 
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The Fourier series associated to f  is: 
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13. Define the Fourier transform. The Fourier  inverting formula. 

 

Answer: 

The Fourier transform of an absolutely integrable function :f RC  is: 

 

    .ˆ dtetff it

R

 
 

The Fourier inverting formula is  

    .
2
1 


deftf it

R


 .
 

 

 

14. Write the filtering formula and the Fourier transform for the unit impulse. 

 

Answer: 

The filtering formula is: 
00( ) ,xx x   where   is the Dirac’s distribution. 

The Fourier transform is ˆ 1.   
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 15. Solve the Cauchy-Problem 

 

 
     
 






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where a  is a continuous function.  

 

 

Answer:     

The given equation can be rewritten as 

 

  
   sa
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Integrating between 0t and t , we obtain 
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Thus, the sought-for solution is 
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Physics 
1. Definition of mechanical energy 

 
Answer: The general form of the definition for mechanical energy is: Emech = K + PE 
Where: 
PE refers to the total potential energy of the system, including all types of potential energy; [J] 
K refers to the sum of the kinetic energies of all particles in the system, [J] 
Emech is the total mechanic energy ; [J] 
 
 2. Definition of the kinetic energy 
 
Answer: The kinetic energy K of an object of mass m moving with a speed v is defined as K = ½ (mv2) 
K is the kinetic energy of the moving object [J] 
m is the mass of the moving object [kg] 
v is the speed of the object [m/s] 
 
 3. Definition of work 
 
Answer: The work W done on a system by an external agent exerting a constant force on the system is 
the product of the magnitude F of the force, the magnitude ∆r of the displacement of the point of 
application of the force, and cos θ, 
where θ is the angle between the force and displacement vectors. The work is a scalar quantity. 
W is the work [J] 
F is the constant external force acting on the system [N] 
∆r is the magnitude of the displacement, [m] 
The work done by a variable net force is 

  
where the integral is calculated over the path that the particle takes through space. 
 
 4. Definition of potential energy 
 
Answer: The expression of potential energy, in linear systems, is a function of position (relative 
position). The corresponding force is also a function of position. 
The gravitational potential energy PE is the energy that an object of mass m has by virtue of its position 
relative to the surface of the earth. That position is measured by the height h of the object relative to an 
arbitrary zero level:    PE = mgh 
PE is the gravitational potential energy [J] 
m is the mass [kg] 
g is the gravitational acceleration [m/s2] 
h is the height [m] 
 
 5. Definition of (mechanical) power 
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Answer: Power is the rate at which energy is expended or converted to another form.  
Mechanically, it is the rate at which work is done. Power is work done per unit time. 
Average power: P = W/t = work[J]/time[s] . 
 SI Unit for power is the watt: 1W=1J/1s 
 
 6. Definition of heat 
 
Answer: Heat is energy that flows from a higher-temperature object to a lower-temperature object 
because of the difference in temperatures. The substance has internal energy, not heat. The word “heat” 
is used only when referring to the energy actually in transit from hot to cold. 
SI Unit of Heat: joule (J) 
 

7. Conservation of mechanical energy  
 
Answer: For an isolated system the energy in the system is conserved and the sum of the kinetic and 
potential energies remains constant. KE + PE = constant 
The total mechanical energy, Emech = KE + PE of an object remains constant as the object moves, 
provided that the net work done by external nonconservative forces is zero, Wnc=0. 
 
 8. Conservation of linear momentum (impulse) for an isolated system 
 
Answer: The linear momentum  of a particle or an object that can be modeled as a particle of mass m 
moving with a velocity  v is defined to be the product of the mass and velocity: vmp 

 . 
The total linear momentum of an isolated (net external force equal to zero) system remains constant.   

  0 dt
pdF


;  totp constant 

 
9. The conservation of the angular momentum 

 
Answer: The instantaneous angular momentum of the particle relative to the origin O is defined by the 
vector L  
product of its instantaneous position vector r  and the instantaneous linear momentum p . 

prL   
The total angular momentum of a system is conserved if the net external torque acting on the system is 
zero.  

extext FrM    
dt
LdM    External 0M , → 0

dt
Ld , → L constant 

 
 10. The Hooke’s law 
 
Answer: The force of an elastic system (spring), inside the limits of linearity (elasticity) is given by 

xkF 
  
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Where x is the displacement of the spring's end from its equilibrium position (a distance, in SI units: 
m); 

F is the restoring force exerted by the material (in SI units: N or kgms-2); and 
k is a constant called the rate or spring constant (in SI units: N·m-1 or kgs-2). 

 

For an elastic bar:    
ES
lFl



 0  

Where F is the force [N] , l0 is the initial length of the bar [m], S is the cross section of the bar [m2] and 
E is the Young’ module (elasticity) of the material of the bar [N/m2]. 
  

11. Archimedes’s law 
 
Answer: The apparent loss in weight of a body immersed in a fluid is equal to the weight of the 
displaced fluid 
Or:  a body immersed in a fluid is pushed up, in the vertical direction, with a force equal to the 
weight of the volume of the displaced fluid. 

 
12. The law of absorption of waves 

 
A: In a homogenous dissipative media the intensity of plane waves reduces exponentially with the 
distance 

xk
0eII   

where I0 is the intensity of the penetrating wave, I is the intensity of the wave at distance x, and k is the 
absorption coefficient. 
The absorption coefficient is a characteristic of the medium, depending also on the wave length of the 
incident wave  
The intensity „I” of the wave is numerically equal to the energy carried by the wave in a second, trough 
the surface normal (orthogonal on the wave direction of propagation. 
 
 13. The reflection laws 
 
Answer: The incident ray, the reflected ray, and the normal to the surface all lie in the same plane, 
 and  
the angle of reflection equals the angle of incidence . 
 
 14. The refraction laws 
 
Answer: When light travels from a material with refractive index n1 into a material with refractive 
index n2, the refracted ray, the incident ray, and the normal to the interface between the materials all lie 
in the same plane. The angle of refraction is related to the angle of incidence by n1· sinθ1 = n2· sinθ2. 
 
The index of refraction n of a material is the ratio of the speed c of light in a vacuum to the 
speed v of light in the material. 
 
 

12 - 2016



13 

 

 15. Coulomb’s law 
 
Answer: The magnitude F of the electrostatic force exerted by one point charge q1 on another point 
charge q2 is directly proportional to the magnitudes │ q1│and │ q2│of the charges and inversely 
proportional to the square of the distance r between them. 

2
21 1

4 r
qqF 





  

The electrostatic force is directed along the line joining the charges, and it is attractive if the charges 
have unlike signs and repulsive if the charges have like signs. 
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Measuring Units 
of the International System of Units 

1. Specify the SI unit and its symbol for mass. Specify the multiplier and its symbol for micro 
(example: atto = 10-18, a).  

The SI unit for mass is the kilogram. Its symbol is kg. The multiplier for micro is 10-6. Its symbol 
is . 

2. Specify the SI unit and its symbol for length. Specify the multiplier and its symbol for milli 
(example: atto = 10-18, a).  

The SI unit for length is the metre. Its symbol is m. The multiplier for milli is 10-3. Its symbol is 
m. 

3. Specify the SI unit and its symbol for time. Specify the multiplier and its symbol for micro 
(example: atto = 10-18, a). 

The SI unit for time is the second. Its symbol is s. The multiplier for micro is 10-6. Its symbol is 
. 

4. Specify the SI unit and its symbol for electrical current. Specify the multiplier and its symbol for 
milli (example: atto = 10-18, a). 

The SI unit for electrical current is the ampere. Its symbol is A. The multiplier for milli is 10-3. Its 
symbol is m. 

5. Specify the SI unit and its symbol for angular velocity. Specify the multiplier and its symbol for 
kilo (example: atto = 10-18, a).  

The SI unit for angular velocity is the radian per second. Its symbol is rad/s. The multiplier for 
kilo is 103. Its symbol is k. 

6. Specify the SI unit and its symbol for frequency. Specify the multiplier and its symbol for tera 
(example: atto = 10-18, a). 

The SI unit for frequency is the hertz. Its symbol is Hz. The multiplier for tera is 1012. Its symbol 
is T. 

7. Specify the SI unit and its symbol for energy, work and heat. Specify the multiplier and its 
symbol for mega (example: atto = 10-18, a).  

The SI unit for energy, work and heat is the joule. Its symbol is J. The multiplier for mega is 106. 
Its symbol is M. 

8. Specify the SI unit and its symbol for power and radiant flux. Specify the multiplier and its 
symbol for giga (example: atto = 10-18, a).  
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The SI unit for power and radiant flux is the watt. Its symbol is W. The multiplier for giga is 109. 
Its symbol is G. 

9. Specify the SI unit and its symbol for electrical charge and quantity of electricity. Specify the 
multiplier and its symbol for femto (example: atto = 10-18, a). 

The SI unit for electrical charge and quantity of electricity is the coulomb. Its symbol is C. The 
multiplier for femto is 10-15. Its symbol is f. 

10. Specify the SI unit and its symbol for voltage, electrical potential difference and electromotive 
force. Specify the multiplier and its symbol for nano (example: atto = 10-18, a).  

The SI unit for voltage, electrical potential difference and electromotive force is the volt. Its 
symbol is V. The multiplier for nano is 10-9. Its symbol is n. 

11. Specify the SI unit and its symbol for electrical field strength. Specify the multiplier and its 
symbol for mega (example: atto = 10-18, a). 

The SI unit for electrical field strength is the volt per metre. Its symbol is V/m. The multiplier for 
mega is 106. Its symbol is M. 

12. Specify the SI unit and its symbol for electric resistance, impedance and reactance. Specify the 
multiplier and its symbol for kilo (example: atto = 10-18, a). 

The SI unit for electric resistance, impedance and reactance is the ohm. Its symbol is . The 
multiplier for kilo is 103. Its symbol is k. 

13. Specify the SI unit and its symbol for electrical conductance. Specify the multiplier and its 
symbol for kilo (example: atto = 10-18, a). 

The SI unit for electrical conductance is the siemens. Its symbol is S. The multiplier for kilo is 
103. Its symbol is k. 

14. Specify the SI unit and its symbol for electric capacitance. Specify the multiplier and its symbol 
for pico (example: atto = 10-18, a). 

The SI unit for electric capacitance is the farad. Its symbol is F. The multiplier for pico is 10-12. 
Its symbol is p. 

15. Specify the SI unit and its symbol for inductance. Specify the multiplier and its symbol for milli 
(example: atto = 10-18, a). 

The SI unit for inductance is the henry. Its symbol is H. The multiplier for milli is 10-3. Its 
symbol is m. 
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Electronic Circuits 
1. Demonstrate the optimum input and output impedance for a voltage amplifier.  

2011 EC (c 01).ppt / slides 8,9  
 

Amplifiers fundamental properties
 Gain
 Input impedance
 Output impedance

General amplifier model
 There are three types of gain: 
voltage gain (AV), 
current gain (AI), 
power gain (AP).

 The gain of a circuit is determined by its component values !!! 
 When the gain of a circuit has been calculated, it can be used to 

determine the output of the circuit for a specified input

Slide 8Lecture 1: Introduction to amplifiers

Zin

Zout

OutputInput A

2011 Electronic Circuits

IN

OUT
V V

VA 
IN

OUT
P P

PA 
IN

OUT
I I

IA 

 
 
 
 

Ex: Voltage amplifier circuit

Amplifier model Amplifier circuit
 At the circuit input and output there are 2 voltage dividers:

where

 Since  and 
=> The effective voltage gain of a circuit is lower than the calculated 

voltage gain of the amplifier itself.
To neglect  the input and output voltage drop we must have : 
[Infinite gain], Infinite input impedance, Zero output impedance !!!

Slide 9Lecture 1: Introduction to amplifiers

Zin

Zout

OutputInput

A Zin

Zout

Av Vin
Vs

Rs

RL

2011 Electronic Circuits

Vin
VL

INS

IN
SIN ZR

Zvv



LOUT

L
OUTL RZ

Rvv



INVOUT vAv 

SIN vv  OUTL vv 
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2. Explain Miller effect and theorem and its utility for high frequency analysis. 
2011 EC (c 03+04).ppt /slides 37-38, seminar nr.2.doc 

 

Miller Effect

An impedance Z12 connected from the input of an
amplifier to the output can be replaced by an
impedance across the input terminals (Z10) and
impedance across the output terminals (Z20).

 

Miller Effect

An impedance Z12 connected from the input of an
amplifier to the output can be replaced by an
impedance across the input terminals (Z10) and
impedance across the output terminals (Z20).
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 Example: For the following circuit, we consider the amplifier’s parameters: 
 

Au = 102 , Ri= 1M, R0= 1K.  
 

 
 
Compute high cut of limit frequency of the circuit, using Miller’s theorem 
 
Answer: 
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fp2 >> fp1 →  KHz601  pî ff
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3. Which amplifier class is known for its crossover distortions? Explain the root cause and ways 
of improvement based on a simplified schematic and is transfer characteristic.  

2011 EC (c 05).ppt / slides 22-24, 37 
 
 

Class B - output stage circuit 

Slide 222011

Named also Complementary-symmetry amplifier 
= 2 complementary BJT’s  used as emitter followers, working in 
“push pull” mode.

Advantage: good efficiency – up to 78.5% (in DC mode – no current 
sink from supply)
Drawback: Crossover distortion

Electronic Circuits Course  
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Class B – crossover distortion

Slide 232011 Electronic Circuits Course

=> crossover distortion between the “halves” of the signal  

Conduction angle – less than ½ T 

 
 

Class B biasing

Slide 242011

Biasing must provide V(B1)- V(B2) to keep Q1 and Q2 off, but 
close to conduction => lower crossover distortion

BJT ‘s can be biased using 2 diodes or a “VBE multiplier” circuit => 
constant voltage drop between Q1 and Q2 bases 

Electronic Circuits Course  
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Opamp Implementation

Op amp connected in a negative-feedback loop to reduce 
crossover distortion

Electronic Circuits Course Slide 372011  
 
 

 
 

4. Describe half bridge class D amplifiers topology, block schematic and principle of operation. 
2011 EC (c 06).ppt  / slides 5-7  
 

 
Class D – (half bridge) simplified circuit

Slide 52011 Electronic Circuits Course

– operation is switching, hence the term switching power amplifier
– output devices are rapidly switched on and off at least twice for 
each cycle
– the output devices are either completely on or completely off so 
theoretically they do not dissipate any power

Note: Final stage looks like in class B, but works in switching – not linear mode !!!
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Class D  - PWM signal generation

Slide 62011 Electronic Circuits Course

The input signal is compared with a triangle signal 
resulting in a PWM (Pulse width modulation) signal

 
 

Class D – PWM waveforms

Slide 72011 Electronic Circuits Course

Usually 150KHz to 250Khz switching freq. is used
The LC LPF provide at the output the mean value of the 
PWM signal - same shape as the Input signal 
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5. Using formula show the most unwanted occurrence place for an external perturbation in a 
multistage amplifier sing a gobal negative feedback loop 

2011 EC (c 07).ppt/ slide 11 
 

 
Perturbation influence in Feedback Amps

Electronic Circuits Course Slide 112011

Perturbations are reduced as 
they are closer to output 
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6. Demonstrate bandwidth extension for an amplifier when a negative feedback is applied. 
2011 EC (c 07).ppt /slides 5-7 
 

 
Feedback effect over gain

 For amplifiers with feedback we can assume that the

Electronic Circuits Course Slide 52011
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
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
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
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

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
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

F times improvement !!! 

 
 

If   and a real number, 

Then:

only the poles are shifted  

Influence of the feedback on freq. response

Slide 6Electronic Circuits Course2011  
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Influence of the feedback on freq. response(@high freq.)

where

Then:

Note: only if circuit still behave linear !!!
Slide 7Electronic Circuits Course2011

&

 
 
 

7. Show input and output resistance change for an amplifier when a shunt-shunt feedback is 
applied. Justify with formulas. 

2011 EC (c 08).ppt / slides 7,8,10 
 

 

Transfer impedance of the amp. with influences included and no feedback 

Electronic Circuits Course Slide 72011

β

-Obtained by separating 
feedback network  

Shunt Shunt Negative Feedback
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Electronic Circuits Course Slide 82011

Small value, 
because ig 
split also to 
the feedback 
network.

Shunt Shunt Negative Feedback

 
 

Electronic Circuits Course Slide 102011

The output resistance  determination

Shunt Shunt Negative Feedback
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8. Draw noise equivalent schematic of an amplifier and define noise factor F. 

2011 EC (c 11).ppt / slides 17, 18, 19 
 

Noise model for an Amplifier

Electronic Circuits Course Slide 172011

If the noise sources are uncorrelated, noise 
at output:

Total noise voltage 

 
 

Noise figure (factor)

Electronic Circuits Course Slide 182011

 Compare noise produced by the amp. with the noise produced 
by the generator Rg

SNR – signal to noise ratio
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9. Explain dominant pole (lag) compensation method. How is related dominant pole frequency 

to gain unity frequency dBf0 . Show practical implementation.  
2011 EC (c 10).ppt / slides 19-21  
 

4.1 Dominant-pole compensation

It represents a very popular method, also called lag
compensation. It consists in adding another pole in the
open-loop transfer function - A(jω) - at a very low
frequency, such that the loop-gain drops to unity by the
time the phase reaches -180°:

d

C

f
fj

jAjA



1

1)()( 

where fpk are the pole frequencies for A(j).

)min( pkd ff 

Slide 19Electronic Circuits Course2011  

A serious disadvantage of this compensation method is the 
resulting close-loop amplifier bandwidth, drastically reduced 
(fig. 4). 

Fig. 4. Dominant-pole compensation.

Slide 20Electronic Circuits Course2011  
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